Chronic ethanol and withdrawal effects on kainate receptor-mediated excitatory neurotransmission in the rat basolateral amygdala.
نویسندگان
چکیده
Withdrawal (WD) anxiety is a significant factor contributing to continued alcohol abuse in alcoholics. This anxiety is extensive, long-lasting, and develops well after the obvious physical symptoms of acute WD. The neurobiological mechanisms underlying this prolonged WD-induced anxiety are not well understood. The basolateral amygdala (BLA) is a major emotional center in the brain and regulates the expression of anxiety. New evidence suggests that increased glutamatergic function in the BLA may contribute to WD-related anxiety following chronic ethanol exposure. Recent evidence also suggests that kainate-type ionotropic glutamate receptors are inhibited by intoxicating concentrations of acute ethanol. This acute sensitivity suggests potential (KA-R) contributions by these receptors to the increased glutamatergic function seen during chronic exposure. Therefore, we examined the effect of chronic intermittent ethanol (CIE) and WD on KA-R-mediated synaptic transmission in the BLA of Sprague-Dawley rats. Our study showed that CIE, but not WD, increased synaptic responses mediated by KA-Rs. Interestingly, both CIE and WD occluded KA-R-mediated synaptic plasticity. Finally, we found that BLA field excitatory postsynaptic potential responses were increased during CIE and WD via a mechanism that is independent of glutamate release from presynaptic terminals. Taken together, these data suggest that KA-Rs might contribute to postsynaptic increases in glutamatergic synaptic transmission during CIE and that the mechanisms responsible for the expression of KA-R-dependent synaptic plasticity might be engaged by chronic ethanol exposure and WD.
منابع مشابه
Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala
Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...
متن کاملEthanol inhibition of kainate receptor-mediated excitatory neurotransmission in the rat basolateral nucleus of the amygdala.
The neurobiological mechanisms governing alcohol-induced alterations in anxiety-like behaviors are not fully understood. Given that the amygdala is a major emotional center in the brain and regulates the expression of both learned fear and anxiety, neurotransmitter systems within the basolateral amygdala represent likely mechanisms governing the anxiety-related effects of acute ethanol exposure...
متن کاملChronic ethanol and withdrawal differentially modulate pre- and postsynaptic function at glutamatergic synapses in rat basolateral amygdala.
Withdrawal anxiety is a significant factor contributing to continued alcohol abuse in alcoholics. This anxiety is long-lasting, can manifest well after the overt physical symptoms of withdrawal, and is frequently associated with relapse in recovering alcoholics. The neurobiological mechanisms governing these withdrawal-associated increases in anxiety are currently unknown. The basolateral amygd...
متن کاملChronic Ethanol and Withdrawal Differentially Modulate Pre- and Post-synaptic Function at Glutamatergic Synapses in Rat Basolateral Amygdala Abbreviated Title: Ethanol and withdrawal alter BLA glutamatergic transmission
Withdrawal anxiety is a significant factor contributing to continued alcohol abuse in alcoholics. This anxiety is long lasting, can manifest well after the overt physical symptoms of withdrawal, and is frequently associated with relapse in recovering alcoholics. The neurobiological mechanisms governing these withdrawal-associated increases in anxiety are currently unknown. The basolateral amygd...
متن کاملSelective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons.
Topiramate is a widely used antiepileptic agent whose mechanism of action is poorly understood. The drug has been reported to interact with various ion channel types, including AMPA/kainate receptors. In whole-cell voltage-clamp recordings from principal neurons of the rat basolateral amygdala, topiramate at low concentrations (IC50, approximately 0.5 microm) selectively inhibited pharmacologic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Alcohol
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2009